

CLP biotest concentration limits – implications for H14 classification test procedures

> Magnus Breitholtz Ola Wik Kristian Hemström Sara Stiernström

Test proceedure - risk and hazard assessment of waste

Practical implications of the application of CLP concentration limits

Concentration limits for environmental hazards in CLP-*Hazardous to the aquatic environment*

Acute aquatic hazard	Acute 1			
L(E)C50, mg/l	≤1			
Long-term aquatic hazard	Chronic 1	Chronic 2	Chronic 3	Chronic 4
Rapidly degradable substances NOEC / ECx, mg/l	≤0,01	≤0,1	≤1	-
Non-rapidly degradable substances NOEC / ECx, mg/l	≤0,1	≤1	-	-
Chronic toxicity data not available L(E)C50, mg/l	≤1 ¹⁾	≤10 ¹⁾	≤100 ¹⁾	2)
No need to classify				
NOEC / ECx, mg/l	>1	>1	>1	>1

¹⁾ If potential for bioaccumulation and/or not rapidly degradable.

²⁾ If potential for bioaccumulation and not rapidly degradable.

Practical implications of the application of CLP concentration limits

Concentration limits for environmental hazards in CLP-*Hazardous to the aquatic environment*

What categories should trigger a hazardous waste classification?

Acute aquatic hazard	Acute 1								
L(E)C50, mg/l	≤1								
Long-term aquatic hazard	Chronic 1	Chronic 2	Chronic 3	Chronic 4					
Rapidly degradable substances									
Chronic test NOEC/ECx > 1 mg/l – Not hazardous to the aquatic environment									
L(E)C50, mg/l	$\leq 1^{+}$	<u><u> </u></u>	S100+7	<u> </u>					
No need to classify									
NOEC / ECx, mg/l	>1	>1	>1	>1					

¹⁾ If potential for bioaccumulation and/or not rapidly degradable.

²⁾ If potential for bioaccumulation and not rapidly degradable.

Practical implications of the application of CLP concentration limits

Test conditions in the Transformation/dissolution (T/D) protocol refered to in CLP

ANNEX 10 UN GHS: GUIDANCE ON TRANSFORMATION/DISSOLUTION OF METALS AND METAL COMPOUNDS IN AQUEOUS MEDIA

Test	Loading rate (mg/l)	L/S ratio (l/kg)	pH (highest dissolved	Time	Classification (simplified) (if C _{WAF} >L(E)Cx or NOEC)
Screening	100	10 000 l/kg	6-8.5	24 h	Acute 1 or Chronic
Full test	1	1 000 000 l/kg	6-8.5	/ days	Acute 1 or Chronic 1
Full test	10	100 000 l/kg	6-8.5	7 days	Chronic 2
Full test	100	10 000 l/kg	6-8.5	7 days	Chronic 3
Full test	1	1 000 000 l/kg	5.5-8.5	28 days	Chronic 4

Standardized leaching tests for waste usually L/S 0.1-10 (based on risk assessment methods)

Practical implications of the application of CLP concentration limits

Test conditions in the Transformation/dissolution (T/D) protocol refered to in CLP

ANNEX 10 UN GHS: GUIDANCE ON TRANSFORMATION/DISSOLUTION OF METALS AND METAL COMPOUNDS IN AQUEOUS MEDIA

			dissolved conc)		(if C _{WAF} >L(E)Cx or NOEC	
Screening	100	10 000 l/kg	6-8.5	24 h	Acute 1 or Chronic	
O ur proposal	10 000 (acute) 100 (acute) • Natural 24 h 1 000 (chronic) 1 000 (chronic) • 6					
Full test	1	1 000 000 l/kg	• 8.5 6-8.5	7 days	Acute 1 or Chronic 1	
Full Was Full - pr Full - ro	te often heter actical challer bustness at L afety factors r	rogenous mixt nges (repeatal ./S 10 000-100 notivated com	ures bility, repro 00 000?) pared to CL	ducubili _P (how	ty and	

Practical implications of the application of CLP concentration limits

Practical implications of the application of CLP concentration limits

Biotest

P. subcapitata

Algea

ish embrvo

Test proceedure – test conditions for H14 classification "harmonised" with CLP

NO toxic response – NOT hazardous waste

Chronic test NOEC/ECX > 1 mg/l (L/S 1000 000 l/kg) Not hazardous to the aquatic environment in CLP

Toxic response - further testing (higher L/S ?)

Chemical

analysis

Pretreatment

A BOR - CONTRACTOR							
Parameter	Test condition						
L/S (l/kg)	100 (acute)						
L/S (l/kg)	1 000 (chronic)						
рН	Natural; 6; 8.5						
Time	24 h						
Particle size	<0.125 mm						

Leaching test

pH static test

Chemical

analysis

Danio reio

Biotests "harmonized" with CLP)

Aquatic biotest battery (plant, crustacean, fish)

Acute AND (sub) chronic endpoints

Practical implications of the application of CLP concentration limits

Our experiences from biotests of ashes using L/S 10

Acute toxicity *N.spinipes*

Practical implications of the application of CLP concentration limits

Our experience from biotests of ashes using L/S 10 Subchronic toxicity *N.spinipes*

		Ash 1 (NOEC =1.3% eluate)	Ash 2 (NOEC = 1.3% eluate)	Ash 3 (NOEC = 0.5% eluate)	= Ash 4 (NOEC = >50% eluate)	Ash 5 (NOEC = 20% eluate)	Ash 6 (NOEC = 8% eluate)	Ash 7 (NOEC = 8% eluate)	Ash 8 (NOEC = 8% eluate)	Ash 9 (NOEC =20% eluate)	T	-
		HQ(sub)chronic	$HQ_{(sub)chronic}$	HQ _{(sub)chronic}	HQ _{(sub)chronic}	HQ _{(sub)chronic}	HQ _{(sub)chronic}	HQ _{(sub)chronic}	HQ _(sub) chronic	HQ(sub)chronic	ACAL	
	Zn	0.00012	0.21	0.029	0.0098	0.012	0.001	0.0019	0.00067	0.0017	TH	- The
	Cu	0.0031	0.13	0.00017	0.15	0.037	0.0049	0.4	0.0013	0.0033		
	К	0.011	1.4	0.19	0.2	3.2	3.2	0.15	6.2	0.34		
(Ca	0.0072	0.35	0.16	1.9	0.56	0.83	0.22	0.048	1		A.A.
\mathbf{i}	Al	6.2	0.0013	0.00032	0.16	1.8	0.71	8.9	0.73	0.082		
	Pb	0.000024	0.36	0.28	0.00037	0.11	0.0003	0.0011	0.000059	0.0081	-	

Risk of misclassification due to toxic effects of Ca, K and Al

Practical implications of the application of CLP concentration limits

Conclusions

- Classification of H14 (=hazard) based on concentration limits in CLP require other test strategies than those commonly used for characterization of waste (=risk), e.g. other L/S, pH and particle size
- Risk of misclassification of waste due to toxic effects caused by substances not classified as hazardous (e.g. Ca, K, Al, pH, salinity)
- Our proposal can be used to classify waste as non-hazardous with reference to CLP, but not as hazardous
- Further studies needed...

Practical implications of the application of CLP concentration limits

Thanks for contributions Ola Wik SGI, Magnus Breitholts, Sara Stiernström ITM

kristian.hemstrom@ivl.se www.ivl.se

Thank you for your attention!

Company Presentation January 2010