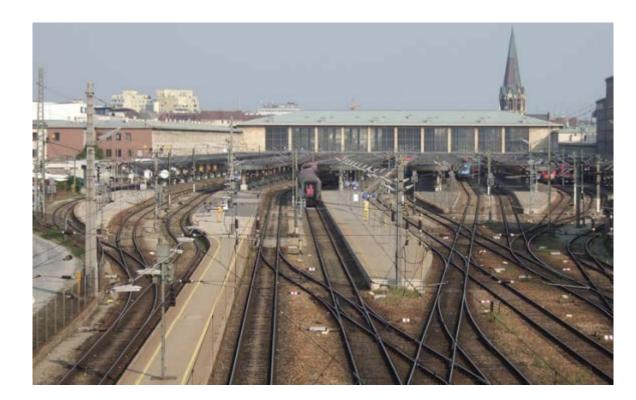
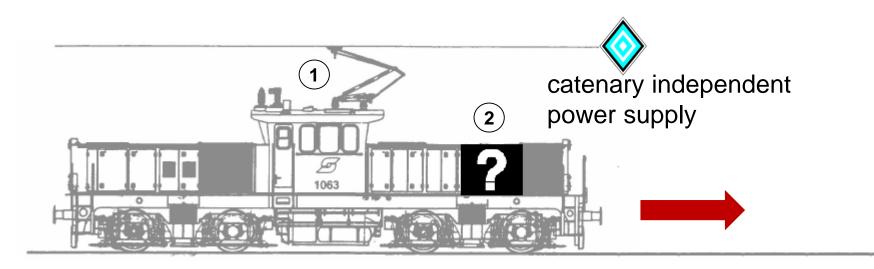


Hybrid rail systems



eHybrid shunter

V1.0 Harald Tisch



- Shunting operations often have to be done with diesel locomotives, although the predominant use is under the electric power line.
- Electric locomotives can not be used because of short distances without catenary (e.g. for freight loading).

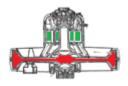
Electric power from the catenary

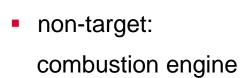
- physical work at least 720.000 kJ
- Power at wheels 150-200 kW
- Possibility to recharge under the catenary

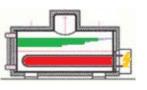
no exhaust emissions / CO2-free

noice reduced

cost-optimised




Flywheel mass



accumulator

steam boiler

- kinetic energy
- chemical/electric energy

- compressed air-/thermic energy
- other

ÖBB-Produktion GmbH checked all existing diesel loco services under the boundary condition of "max. 2 hours performance without catenary": Results:

48 fields of application were identified.

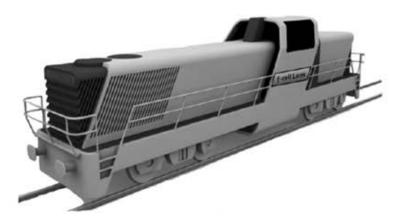
For rail construction efforts up to 40 additional use cases could be possible .

	Una No.		0000.0011	04.0	12,2913	69.05.2	013	Mi	12	Surgisting of the	RLW
			17 MA						-	4	
- Jam	Hipe	1	iter [1].	HIRE.	1	HIDE	25		H)M	14	
	i det			ġ.			HC.S.				Ŀ
	1	ana	HERCA	Ĩ.			HURA		del	(i)	
1	110	CA	33	1		INCA .			2 394	1.0	ja j
			lects	19	4	NIM TO?					- 5
		1	Q24		-	(Pri		6	CP.	Y	-
- 4	89/	4	1.10	9	J.F	1.4	104	4		1.12	
	ica a	ñ.	(Dick	1	PEAT	11	11	p.	10	CA .	
and a	i al hich	mak	Lala	Atta	how	B	n ja	-	11	BIN	1
	WHITE		ALC: NO	vila.	101	J Reve	1.1	-	Widt	CA	153

4 partners for the feasibility study January – June 2015

Zweisystem Lok zur	
Oberbrückung	
Oberleitungsfreierer	
Arbeitsbereiche	VOITH Turbo GmbH
Elektrische Lokomotive mit	
zusätzlichem Akku-	
Energiespeicher für	Molinari Rail Austria
oberleitungsfreien Betrieb	GmbH
	Vienna University of
	Technology - Institute
	for Mechanics and
	Mechatronics, E325
Elektrolok mit Wasser-Elektrolyse-	-
/Brennstoffzellen-Technologie für	Eisenbahn- und
Verschub in Eisenbahnnetzen mit	Transporttochnik
verschub in Eisenbannnetzen mit	Transporttechnik
und ohne Fahrleitung	Entwicklungs
	Entwicklungs
	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik
	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für
	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik
	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für
und ohne Fahrleitung	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für Luft- und Raumfahrt
und ohne Fahrleitung Machbarkeitsstudie für einen	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für Luft- und Raumfahrt
und ohne Fahrleitung Machbarkeitsstudie für einen Energiespeicher auf elektrischer	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für Luft- und Raumfahrt
und ohne Fahrleitung Machbarkeitsstudie für einen	Entwicklungs Montanuniversität Leoben - Institut für Elektrotechnik Deutsches Zentrum für Luft- und Raumfahrt

VOITH



Other separated applicants

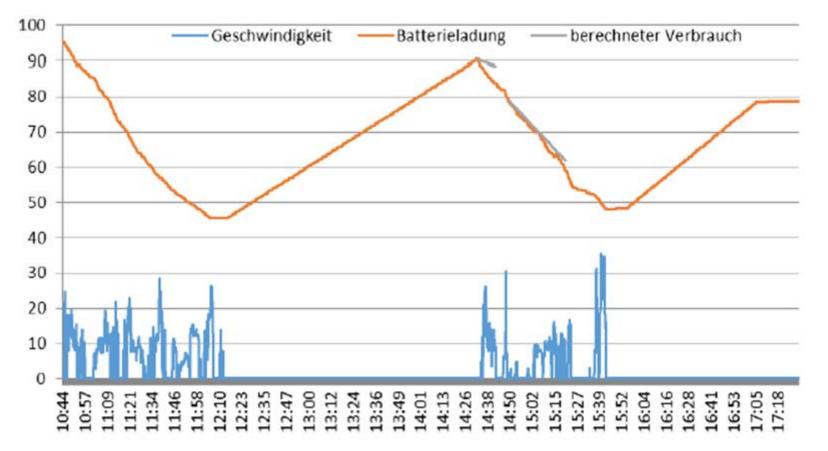
Elektrische Lokomotive mit	
zusätzlichem Supercap- und Akku-	
Energiespeicher für	Molinari Rail Austria
oberleitungsfreien Betrieb	GmbH
	Vienna University of
	Technology - Institute
	for Mechanics and
	Mechatronics, E325
Elektrische Lokomotive mit	
zusätzlicher Brennstoffzelle für	Molinari Rail Austria
oberleitungsfreien Betrieb	GmbH

ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

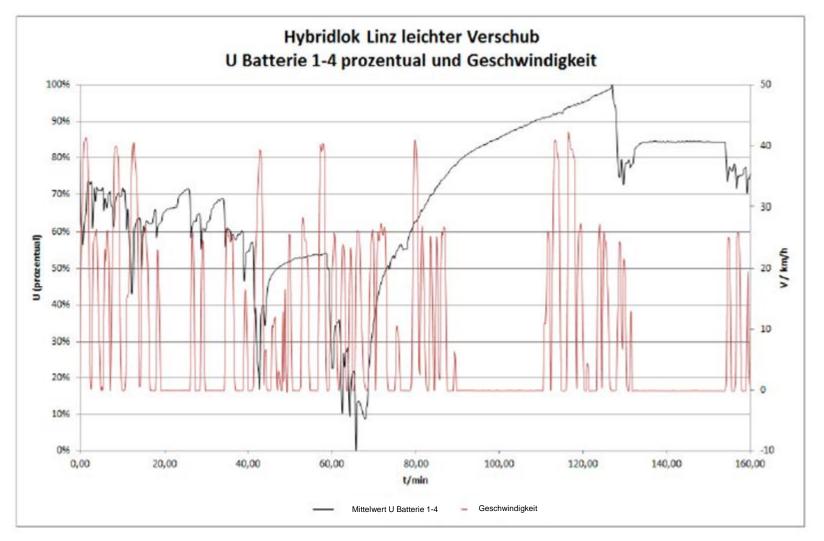
Hybridlocomotive based on H2-fuel cell (the fuel cell works as range extender)

Battery energie storage (LiFePo4) with supercaps for shunting operations without catenary and charging during catenary operation

Construction works


eHybrid shunter heavy haul test run at AB Leoben

Construction works



ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

Variant 1:

New Procurement eHybrid

Variant 2: Refurbishment eHybrid

- Repowered Loco Type 2068
- With approvable Zero-Emission propulsion
 - Using a Mobile Generator Unit (MGU) wich should be proven and approvable
 - Integration of a hybrid electric unit
 - Scalable to 1.000kW
- Project should be implemented in 2 Steps

Step 1: elektrification of the power train

Step 2: electric supply of the power train

 depending on the Business case (shunting yard, area service, service train, work train) two specifications are possible:

Battery + Fuel Cell – Hybrid

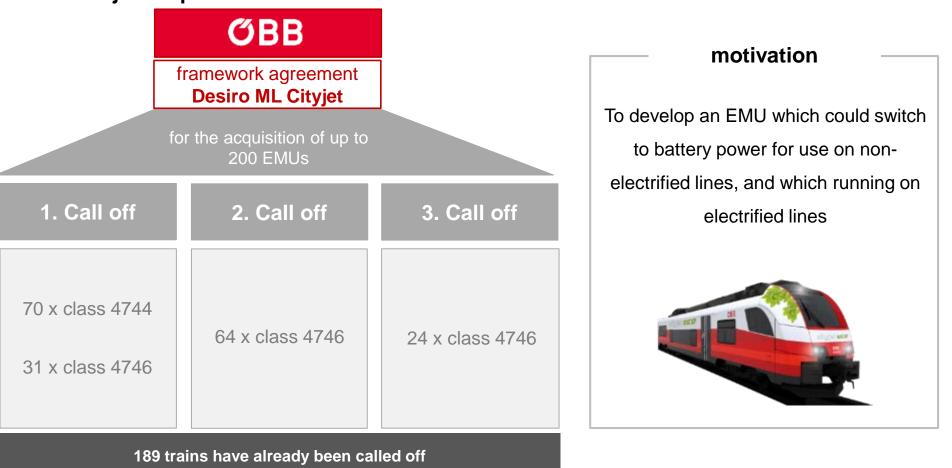
Batterie + Fuel Cell + Supercap (Tribrid)

Questions?

DI Harald Tisch

System engineering Rolling stock ÖBB-Produktion GmbH <u>Harald.tisch@oebb.at</u> +43 664/2868082

More Information: https://konzern.oebb.at/de/nachhaltigkeit/klima/die-ehybridlok-rollt-an


project Cityjet eco

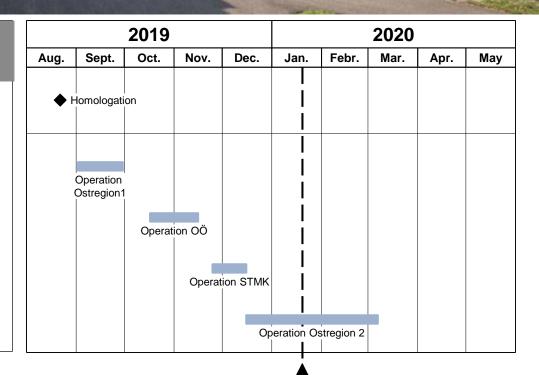
OBB

V1.0 Thomas Gerstenmayer

Projekt Implementation Desiro Main Line

The 24 vehicles from the 3rd supply contract are equipped with a pre-equipment, which makes the conversion to battery vehicles possible.

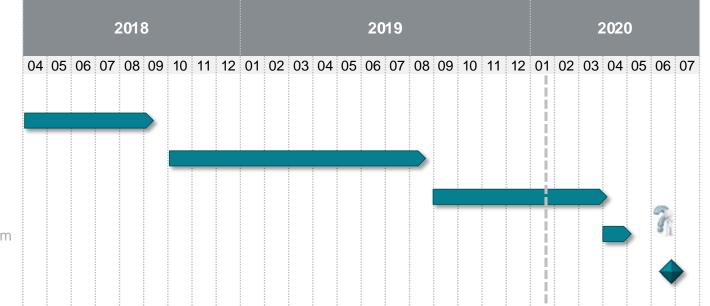
Cityjet eco


cityjet eca

OBB

Pilotproject Cityjet eco

Objective: To create a short-term option for the replacement of diesel vehicles in regional rail transport


- The Cityjet eco is the first battery train approved according to European standards
- Since 02.09.2019 the vehicle is in use in passenger service
- The operation was almost trouble-free and all travel times could be maintained
- Parallel to the pilot vehicle, a series solution and a concept for charging stations is being worked on
- The 24 (+11) vehicles from the 3rd supply contract are prepared for the extension to battery-hybrid vehicles

GBB

OBB

Integration of the battery-system

Activities for Homologation

regular commercial operation

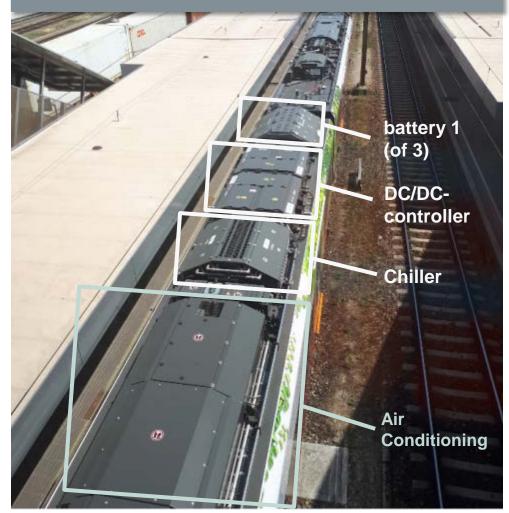
deconstruction of the battery-system

Homlogation for an conventional EMU

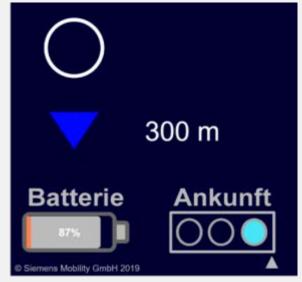
the Project is a cooperation between the ÖBB Personenverkehr und Siemens Mobility

ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

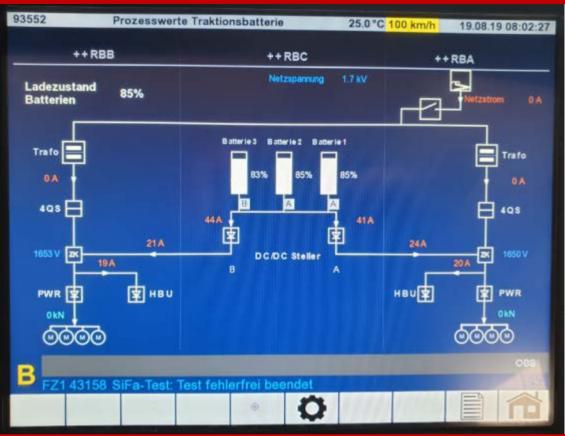
The Desiro ML Cityjet vehicle concept is predestined for extension to a battery-powered vehicle

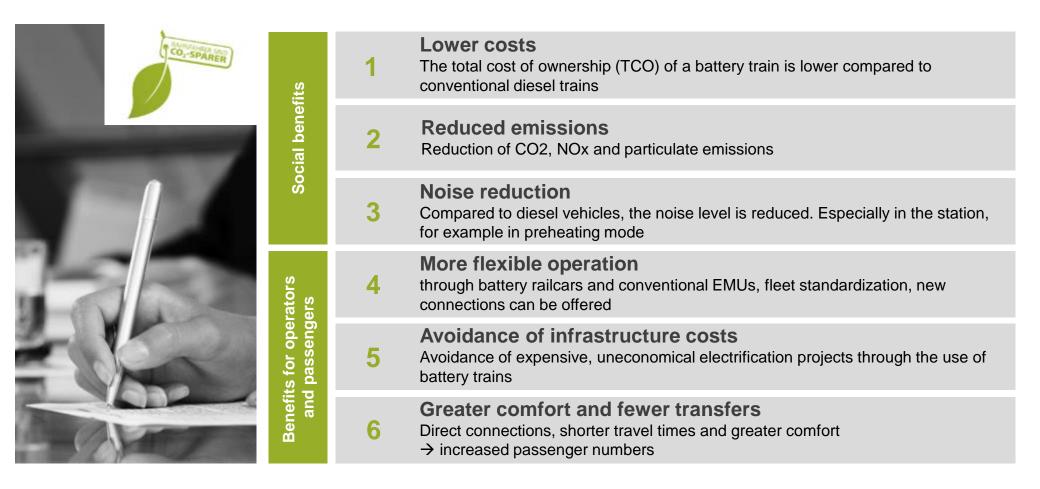

advantage: the complete battery equipment can be accommodated on the centre car

The battery system includes:

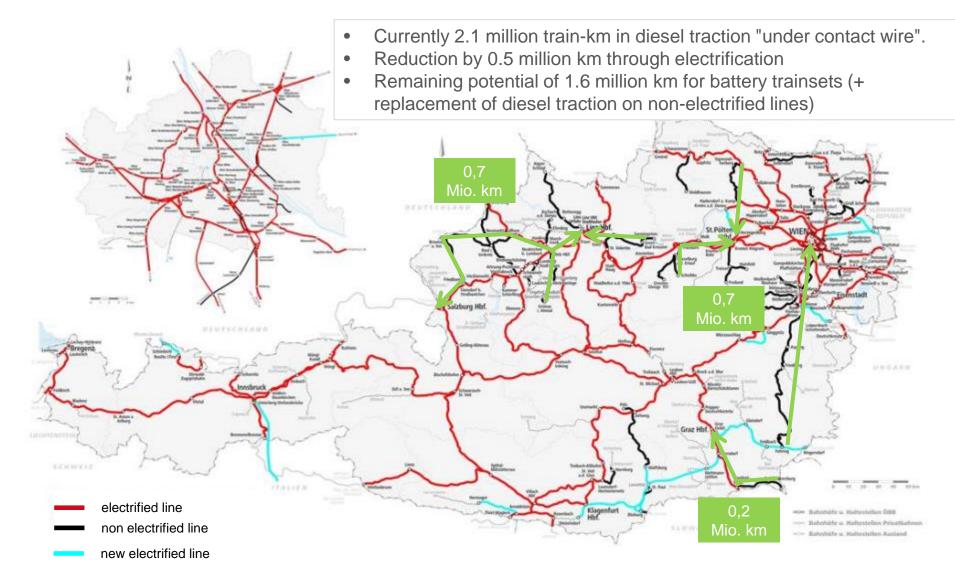

- 3 battery container
- 2 DC/DC controllers
- 1 chiller (for cooling/heating)

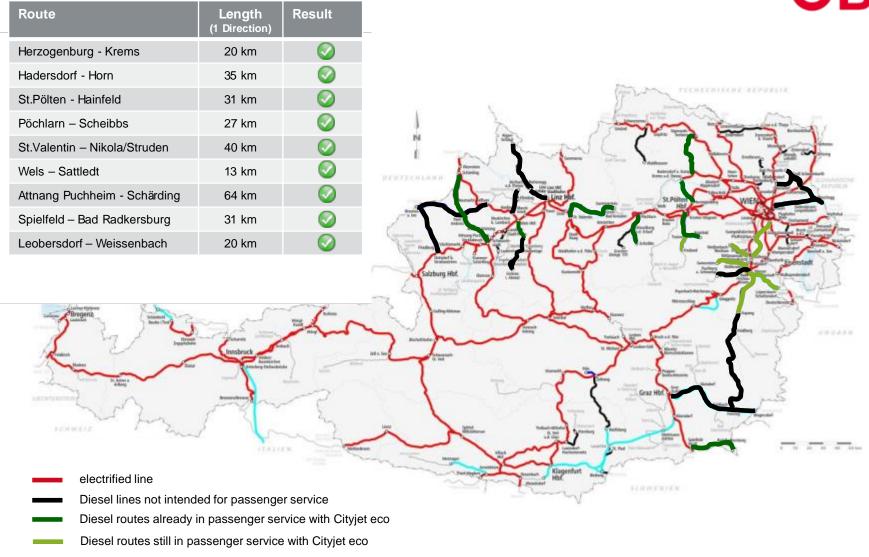
components of the cityjet eco




ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

In the project, importance was attached to ease of use and little training effort.


Additional, a Driver-Assistance-System was developed in the project to signalize the range forecast and to give recommendations for the most energy-efficient driving style


Ē

Cityjet eco Results of Operation

new electrified line

Implementation Desiro Mainline

- 1st ETCS Baseline 3.4 Implementation worldwide

- Power Systems 15kV/16.7Hz~ and 25kV/50Hz~

- Homologation for 4-fold traction

ERA-TV Desiro ML cityjet BL04.23a - Class 4744

- Class 4746

4th Railway Package	Baseline 3.0 Homologation for the final concept for 24 (+11) battery trains	Homologation AUT Class 4746 & 4744 PZB & ETCS Only the subject areas that have not yet been assessed for BL 1.0 and BL 2.0.
Package	Baseline 2.0 Homologation for 24 (+11) pre-equipment battery trains	Extension of Homologation AUT Class 4746 & 4744 PZB & ETCS
3rd Railway Pac	Baseline 1.0 Homologation for battery Prototype	Homologation AUT Class 4746 PZB
3rd	Baseline 4.23 Homologation for conventional Desiro ML	AUT & GER Class 4744 PZB & ETCS Class 4746 PZB & ETCS

Fullfillment of all TSI's and NNTR's

TSI = Technical specifications for interoperability

citujet-eco

Ē

Both railway companies and customers benefit from battery-powered rail transport

Together with our competent partner, we have developed an alternative to diesel traction on partially or non-electrified railway lines

The vehicle is tested in real operation and optimisations are carried out on the basis of the findings

the aim is to develop and implement the ideal solution

ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

Questions?

Thomas Gerstenmayer, BSc

Project Management Vehicle Implementation Urban and regional transport ÖBB-Personenverkehr AG <u>Thomas.gerstenmayer@pv.oebb.at</u> +43 664/8296061

More Information: https://www.oebb.at/de/neuigkeiten/cityjet-eco.html

H2 multiple unit

V1.0 Martin Priessnitz

advantage

Big range Concept of operation comparable to diesel railcar

disadvantage/challenge

H2-Infrastructur has to be build low engergy efficiency (compared to electricity from catenary)

various european vehicle manufacturers (passenger traffic)

- Alstom \rightarrow series production
- Siemens
- Stadler

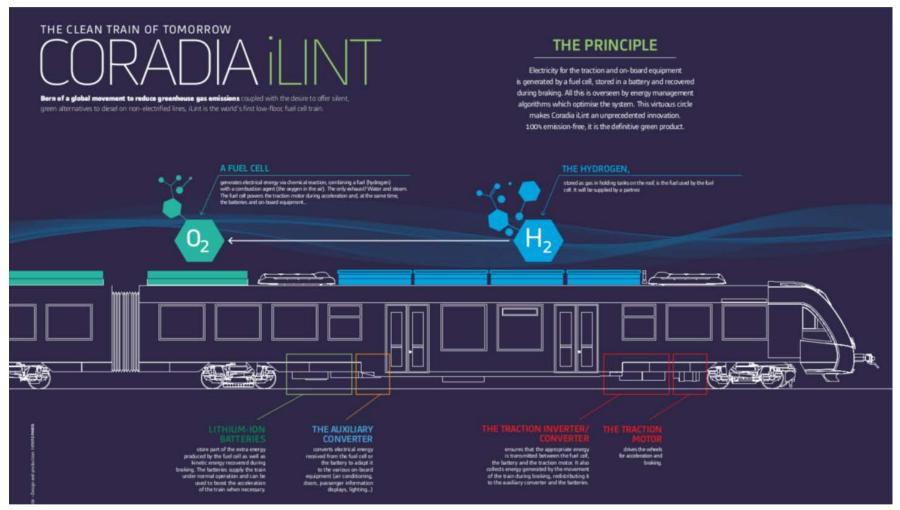
 \rightarrow \rightarrow

- in developement
- in developement

<u>Vorhaben</u>

- Innovative project to test two approved H2-multiple units (including maintenance & filling sation) in passenger traffic
- Main application area **Aspangbahn**: geografic challenging diesel line
- Project goals
 - extensively testing of H2-multiple units in regular operation (passenger traffic)
 - developement of H2 Know-how (technical, operational, economical / approval, logistic) as basis for future System decision making (H2/Akku) for lines wich are not intended to be elektrified
 - Pilot run serves as a supplement to the Elektrification program
 - Use of "green certified" hydrogen from Austria
- Project timetable
 - Concept project spring 2019 (project principal: A. Matthä)
 - preparation project 07/2019-03/2020
 - projected use in passenger traffic: 04/2020-07/2020
- Partner: ÖBB (Personenverkehr, Produktion Technische Services, Infrastruktur, Holding), Alstom, Air Products, austrian technical offices, inside the train: components of austrian manufacturers

Thanks for your attention!


HEUTE. FÜR MORGEN. FÜR UNS.

ÖBB-Personenverkehr AG / ÖBB Produktion GmbH (TLP grün) Alternative Antriebe

Technical Data	AC mode	Battery mode		
Wheel arrangement	Bo'Bo'+2'2'+Bo'Bo'			
Track gauge	1,435 mm			
Maximum speed	140 km/h 120 km/h			
Traction power	up to 2,600 kW			
Installed battery capacity		528 kWh		
Starting acceleration	1.0 m/s ²	0.77 m/s ²		
Power supply	15 kV AC / 25 kV AC			
Length (over coupling)	75,152 mm			
Floor height	600 mm			
Entrance areas	6 on each urban train			
Capacity	244 seats on urban train			
Maximum axle load	< 17 t including traction battery pack			
Crashworthiness	TSI and EN 15227 con	TSI and EN 15227 conform		
Fire protection	CEN / TS 45545 and DIN 5510 Fire protection level 2			

© Alstom