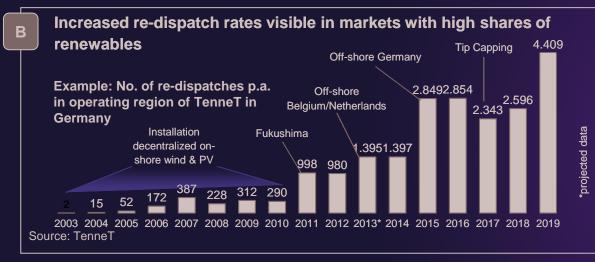
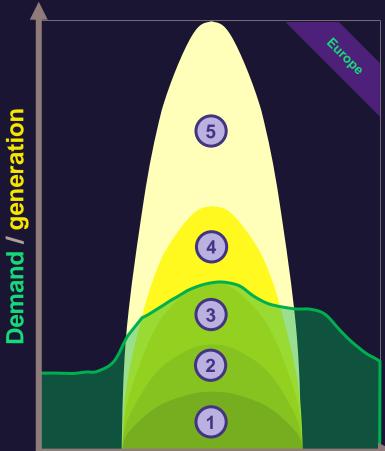

Dekarbonisierung der Industrie - Stromnetze könnten zur "Achillesferse" werden.

Thorsten Krol



Possible future market development

- Demand will increase due to electrification of transportation, traffic, industries and heating
- Generation will increase mainly by renewables, but thermal generation is and will stay the reliable backbone based on green-and e-fuels
- Excess power will be used to produce e-fuels and stored to cover short term demand
- Operation of reliable power is expected to change from base- and intermediate load to peaking operation


- Integration of wind and PV drives TSOs for additional operations stabilizing frequency and voltage
- Renewables market penetration create new business opportunities
- Players like gas engines, batteries, virtual power plants or industries enter the regulation market
- Technical requirements for fossil generation require specialized solutions based on grid generation market

Challenges in markets integrating high shares of renewables

Operational challenges

Possible solution

1 day

1 Low share of renewables within the grid:

- More load cycles in residual load operation
- Grid connection or RES

- Flexible part load operation of existing thermal generators
- Increased demand on adjustable re-active power

2 Moderate share of renewables within the grid:

- Residual load operation requires shut down or MEL operation
- Lack of static and adjustable re-active power
- Load management

- Increased re-dispatch necessary
- Flexible part load operation of existing thermal generators

3 Significant share of renewables within the grid:

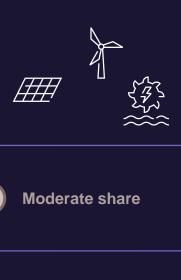
- Reliable generators taken off the grid
- Missing inertia and short circuit power
- Lack of static and adjustable re-active power
- No functional market design

- Excess RES power stored in BESS for load shifting
- Very limited ancillary services

- Some thermal generator on MEL
- Clutch between GT and Gen allows multi-use of thermal equipment
- Flexible thermal units or BESS in RES-chasing operation

Excess renewables within the grid:

- Power / load management
- Special equipment provides all ancillary services for active, re-active and short circuit power
- Integration of FACTS and BESS for fast responding


5 Deep decarbonization:

- Massive excess RES power available
- Mainly inverter connected equipment connected to grid
- No dynamic stabilization within grid
- Green seasonal power required

- Long term storage for over night load shifting and seasonal storage technologies
- Ancillary services and re-dispatch via special equipment
- Multi use of equipment keep costs limited

Impact of increasing shares of RES on energy supply systems: Austria

Dynamics in active power

Voltage stability

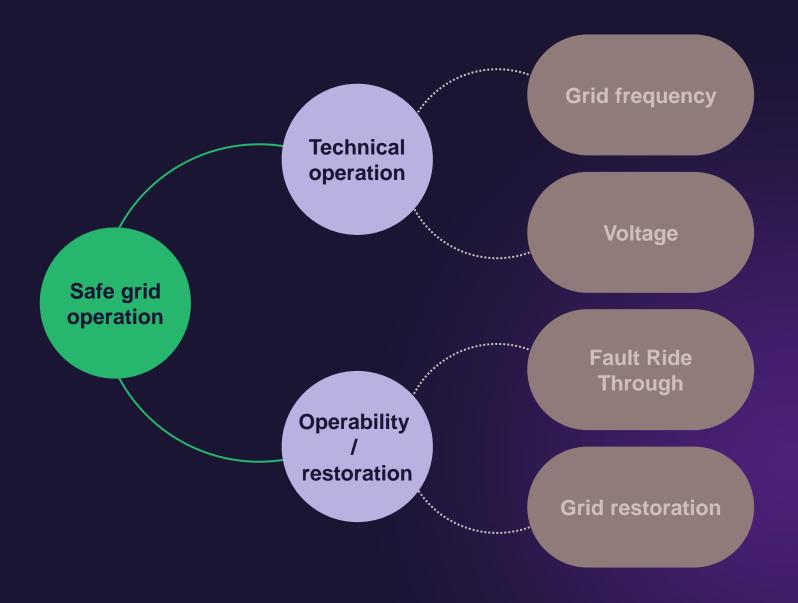
Harmonics and short circuit power

load balancing

Security of supply

- Reduced synchronous inertia result in increased RoCoF
- Higher demand in static compensation (increasing distance from generators and consumers)
- No / low impact

- PFR as ancillary service
- No / low impact


- Significant share
- Increasing demand for SIR (real inertia) and FFR (synthetic inertia)
- Increased probability of flickers due to weaker grids and inverters connected
- Increased level of harmonics
- Lower short circuit power level
- Too slow PFR result in high RoCoF and wide frequency deviation
- Residual load and black-start of Back-up power

- Excess renewables
- SIR (real inertia) and FFR (synthetic inertia) required as ancillary service
- High probability of flickers due to weaker grids and inverters connected
- Missing rotating equipment
- Low short circuit power level
- Long duration energy storage necessary for over night supply
- Availability of RES power requires storage

- Deep decarbonization
- SIR (real inertia) and FFR (synthetic inertia) required as ancillary service
- High demand on flexible VAr compensation for industrial processes
- Missing rotating equipment
- Low short circuit power level
- Intermittent excess RES power for PtX
- PtX enables power and heat supply

What is necessary for a reliable power grid?

- Grid frequency of 50/60 Hz
- Frequency is always within safe tolerance band
- Sinus wave / Harmonics
- Balancing of generation and demand
- Availability at each location within power grid
- Voltage is always within tolerance band around defined voltage level
- Sinus wave, absence of flickers and harmonics
- Balancing of static and fluctuating provision and demand
- Providing sufficient Short Circuit Power
- Safe grid management
- Provide black start capabilities across the whole grid environment
- Capability to execute grid restoration measures after black- or brown-out

Possible impact of grid instabilities on industrial processes

Electrical Machines synchronous motors and generators

- → Increase in losses
- → Premature wear of rotors
- → Inconsistency of motor speeds
- → changes in torque and power (i.e. protection settings of devices)
- → Hunting

Light sources

→ Variations in light flux might impact automated optical processes

Induction motors

- voltage fluctuations may lead to changes in torque and slip
- → Inconsistency of motor speed
- → Excessive vibrations may reduce mech. strength and shortening the motor service life

Changes in ENTSO-E Grid Codes under evaluation

- Frequency: 47 52,5 Hz
- RoCoF: from 2 Hz/s to 5 Hz/s for 250 ms (max. values)
- Short Circuit Level in grid cut by half (protect inverters)
- ...

Impact on industrial production processes

- Voltage: longer distance to RES generators
- More frequent fluctuations in voltage and frequency (e.g. flickers etc.)
- Additions of instabilities by electrification of industrial processes (e.g. EAF)

Impact of grid structure and stability

Electro Heat Equipment

- → Lower efficiency
- → Longer melting time lower productivity

Phase controlled static rectifiers

- → Decrease in power factor
- → generation of noncharacteristic harmonics and inter-harmonics.

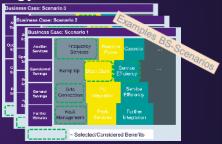
Electrolyzers

- → Reduction of efficiency
- → Forced wear and tear and cyclic life
- → Degradation of high current lines

Integration of all potential local revenue and regulation aspects can be crucial for the final business case of the solution

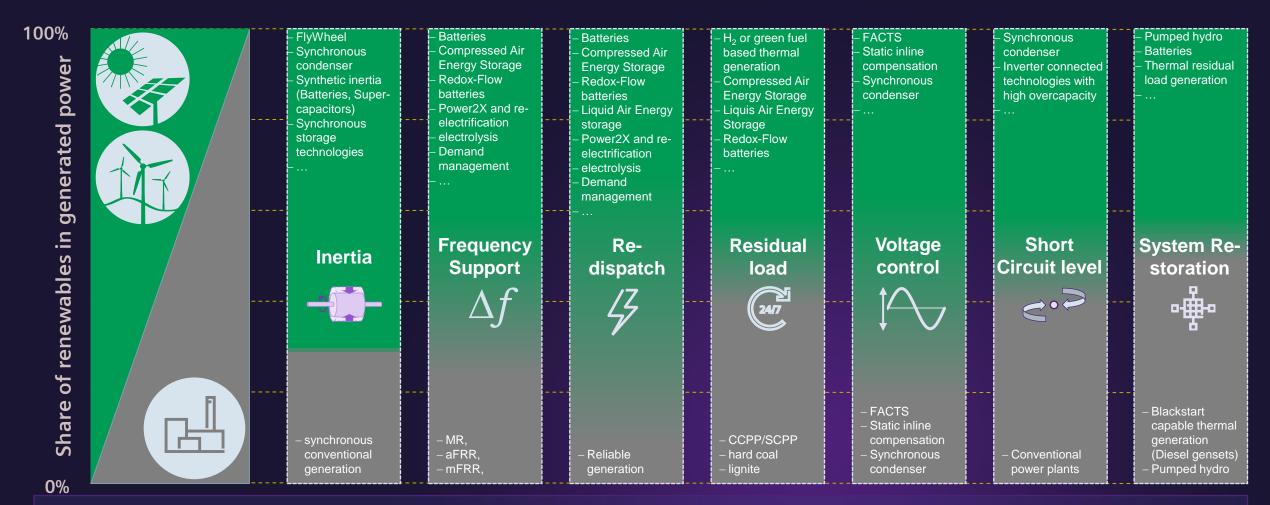
Goals of Approach

 To create detailed outline of business cases for a combined solution


Outcomes

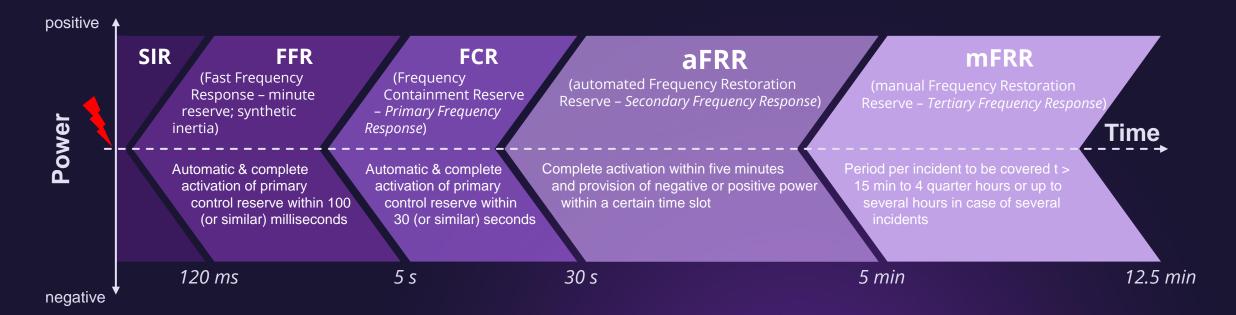
 Multiple scenarios of business case developed and aligned to ensure the optimal setup considering grid connections cost, operational saving, regulatory aspects etc.

Tasks to achieve the outcomes


- Select Use Cases and Data for external Factors
- Select the applicable revenue streams given the nature of the solutions setup (auxiliary services, frequency services, arbitrage)
- Collect data from location and asset owner on regulation, future demand, local initiatives, RES goals etc.
- Align on any further relevant requirements and constraints for initiative design (e.g. time, availability of resources, political initiatives etc.)

- Design Final Business Case with Options
- Design a detailed Business Case and include different scenarios based on local conditions:
 - Auxiliary Services, RES Streams etc.
 - Cost Reductions with BESS
 - Benefits from existing connections, demand forecasts, energy utilizations…

Which services are necessary to stabilize highly renewable penetrated power grids?



Less reliable, thermal generation in the power mix require additional effort within a highly decarbonized grid!

Dynamic stabilization of the Frequency Visual

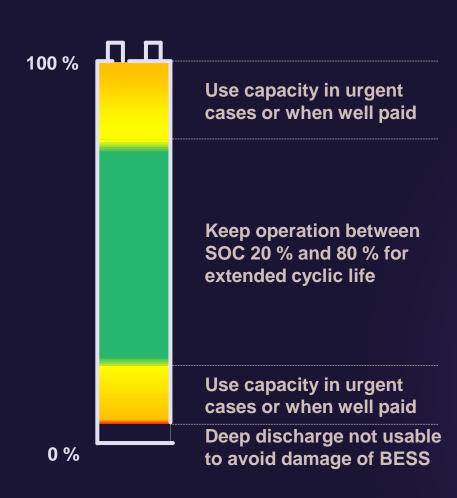
Grid stability - solutions for emerging grids

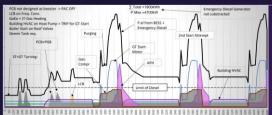
Mature technology

At early stages of deployment / technology that can supply some of the service

Technology that's unlikely to supply the service

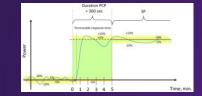
Technology / System needs	Inertia	Voltage control / Reactive Power	Short Circuit Level	System Restoration		
Existing Technologies						
Synchronous Condenser	Ø	Ø	⊘	\checkmark		
Flywheel	Ø	Ø	\checkmark	8		
Static Compensators	*	Ø	✓	8		
Pumped Hydro	Ø	Ø	⊘	⊘		
Emerging Technologies						
Grid Forming Technologies /VSM	✓	<	✓	\checkmark		
Power Electronics with Energy Storage	✓	✓	✓	✓		
Hydrogen Powered Gas Turbines						
Bioenergy with Carbon Capture and Storage	⊘	⊘	⊘	⊘		
Gas Plants with Carbon Capture and Storage	⊘	⊘	⊘	⊘		
Innovation in Power Electronics	×	✓	✓	✓		


Dynamic stabilization of the Frequency Visual



Requirements for Black Start and aFRR (POS & NEG)

Requirements for Black-Start:


Demand with SGT-800 3x1:

- GTs and ST on turning gear
- Cooling system intermittent
- Control system remains powered
- HVAC reduced to min.

min. + failure invest. + cool down
Capacity depending on factor of safety: 3 failed starts: 2.5 1.0 0.4 MWh
4 failed starts: 3.3 1.5 0.4 MWh

Requirements for SFR / aFRR:

> 5 MW, capacity reserved > 60 min (compared to marketable power for aFRR POS and aFRR NEG) Activation sequence requirements:

Response time < 30 s

Power Change period: < 5 min.

Stationary Period: ≥ 10 min (> 60 min mandatory reserved)

- no fuel may be drained or burned unused for aFRR POS or aFRR NEG
- Recharge management must be established and qualified according to spec.
- guaranteed availability 100%

Reference: PQ-Anforderungen (regelleistung.net)

SVC PLUS®

Applications: Typically, where the increase of

transfer capabilities of power

network is needed

Function: Provides fast-acting voltage

support with power compensation

Ratings: up to 400 Mvar per branch

Main advantages:

- Robust and flexible solution in a fast-changing environment
- Handling changes in grid topology, power quality, and system requirements
- Superior over- and undervoltage behavior
- Active Filter functionality
- Transient voltage support after network events
- Cost-efficient, space-saving, flexible solution to increase dynamic stability and power quality of the grid
- Grid forming control capacity

SVC PLUS® Mobile

Applications: Typically, where a plug and play

multi-tool for transmission grids is

needed

Function: Enables temporary grid support and

grid resilience against emergencies

Ratings: ± 50Mvar

Main advantages:

Relocatable

- Quick assembly and disassembly: plug-connection of modules
- Fast grid stabilization and restoration
- A mobile and low footprint
- All modules are available on trailers
- Proven technology of SVC PLUS[®] with the best performance
- No civil work is needed in many cases (depending on soil conditions)
- "Greenfield" operation is possible

SVC PLUS Frequency Stabilizer®

Applications: Typically, to stabilize voltage and

frequency in the grid

Function: Emulates system inertia by boosting

high active power when needed

Ratings: available energy 450 MJ

scalable up to 500MWs

Main advantages:

SVC PLUS FS[®] can address any voltage level

- Blackout prevention due to dynamic voltage and frequency support combined in one unit
- Cost-efficient solution
- Short respond time with high active power output over several seconds
- Highly adaptable solution with a small footprint
- Independent of power generation
- Proven technology of SVC PLUS[®] with the best performance

Synchronous Condenser

Applications: Typically, to stabilize High Voltage

grid during faults

Function: Provides short-circuit power and

inertia for system strength and

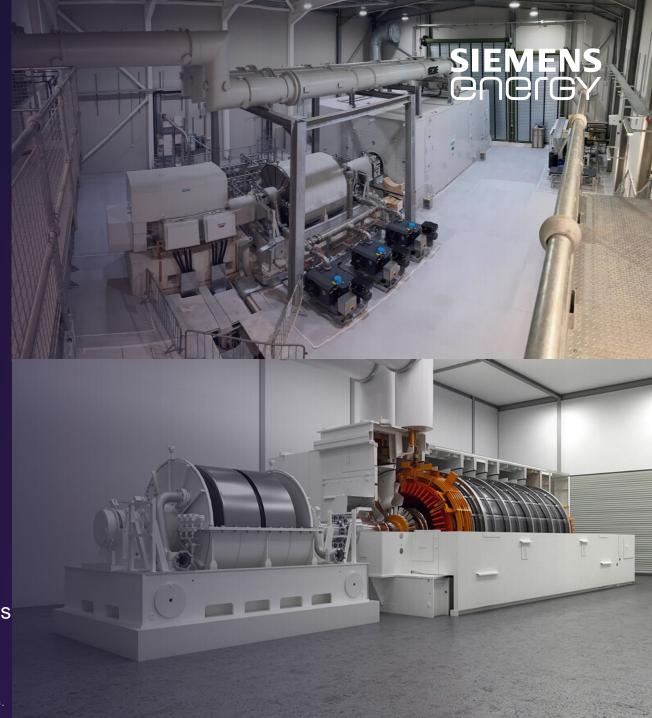
reactive power for voltage stability

in the grid

Ratings: up to 4000 MWs inertia (including

flywheel)

at generator terminals:


> 2000 MVA short circuit power

> -250/ +450 Mvar reactive power

Main advantages:

 Inherent synchronous inertia response for system strength

- High short-term overload capability
- Voltage support and contribution of short-circuit power
- Various flywheel sizes in vacuum to reduce friction losses
- Long term service agreement

Hybrid Generation and Grid Stabilizing Package

Applications: Flexible power and heat generation

and/or balancing services when

required

Function: Provides all grid balancing services

continuously and active power and

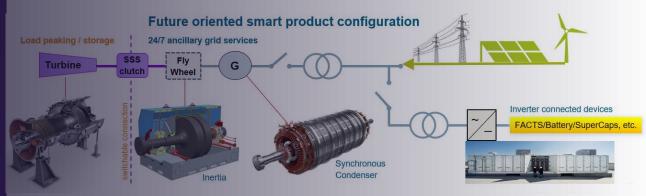
heat on demand

Ratings: active power 5-500MW, more than

4000 MWs inertia (including flywheel

+ synthetic inertia from the BESS)

at generator terminals:


> 2000 MVA short circuit power

> -250/ +450 Mvar reactive power

Main advantages:

- All use Cases along the power value chain can be monetized
- Dynamic mitigation of power quality issues caused by undesired impact of difficult industrial loads to the feeding grid
- Allows controlled shut down of critical industrial processes in critical cases

iSVC PLUS for Industry / Load Compensation

Applications: Typically, where large dynamic loads

have undesired impact to the feeding

grid (Electric Arc Furnaces, Mill

Drives) – directly on MV load busbar

Function: Provides extra-fast reactive power

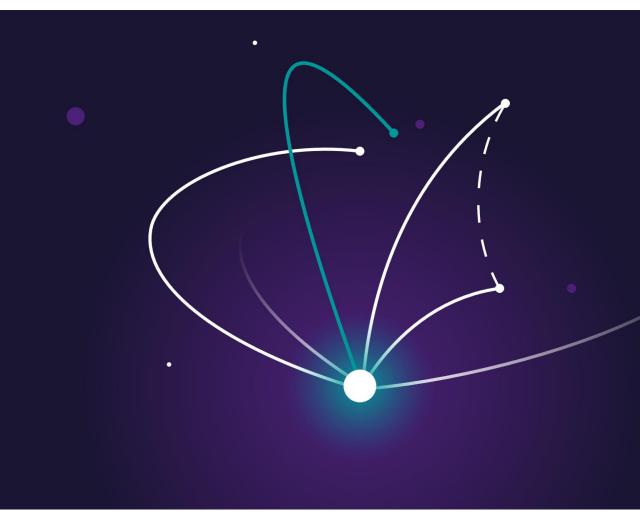
support independently in 3 phases for flicker & harmonics reduction,

voltage stabilization, load balancing

and power factor improvement

Ratings: for loads in the range of

approx. 30-250 MVA


Main advantages:

- Robust and flexible solution in a highly demanding industrial environment
- Mitigating power quality issues caused by undesired impact of difficult industrial loads to the feeding grid
- Active harmonic filtering of the converter, supported by filter circuits where required

Contact page

Published by Siemens Energy

Dr. Thorsten Krol

Senior Key Expert

Siemens Energy

Mülheim an der Ruhr

Mobile: +173 8932742

thorsten.krol@siemens-energy.com

siemens-energy.com