Decarbonization of Aviation

Reaching Net Zero by 2050

Michael Schneider

Assistant Director IATA Sustainability Programs

15 November 2023

IATA Sustainability & Economics Division

Mission

Work for air transportation's environmental and financial sustainability through:

Research Advocacy Standards Programs

S&E Division Policy & Knowledge & Net Zero Sustainability Industry Data Science Standards Engagement Transition Programs Analysis Support in DS • **Research and** Fuel supply • Forecasting of Operational ٠ **Best practices** on . analysis which reliability and passenger & efficiency educational, app & standards underpins the pricing cargo traffic Knowledge lied and development of Support • Net zero Forecasting the products & strategic level robust policy mechanism & research and industry's tools Enhancing • and industry systems planning financial Engagement team's Bl standards. Protect ٠ performance platforms tooling and Sustainable fuel • Stakeholder environmental Analyzing the capabilities production engagement data interests industry in all its **Enabling Genera** • ramp-up and broadfacets tive Al solutions Acceleration based programs advocacy.

Value of Aviation - global support for employment and economic activity

18.1 million	Indirect		\$816.4 billion		
11.3 million	Aviation direct \$96		\$961.3 billion		
EMPLOYMENT		EC	ONOMIC BENEFIT (GDP)		

13.5 million	Induced	\$692.8 billion
18.1 million	Indirect	\$816.4 billion
11.3 million	Aviation direct	\$961.3 billion
EMPLOYMENT		ECONOMIC BENEFIT (GDP)

International tourists transported by air

Global trade transported by air (by value): \$6.5 trillion

13.5 million	Induced		\$692.8 billion		
18.1 million	Indirect	\$816.4 billion			
11.3 million	Aviation direct \$		\$961.3 billion		
EMPLOYMENT		ECO	NOMIC BENEFIT (GDP)		

87.7 million

Your holiday provides someone else's income

44.8 million

Tourism jobs supported by air transport **\$1 trillion** in global GDP supported by air transport-related tourism

\$902 billion

spent by international tourists in 2019

Travel modes of international tourists

What about Cargo?

\$6.5 trillion

Value of cargo handled by air, 2019

61 million

tonnes of cargo handled by air, 2019

High value

Goods tend to be sent by air: e-commerce, perishables, medicines and electronics

Proportion of global trade transported by air

www.aviationbenefits.org | 11

Supporting UN sustainable development: 15 of 17 SDGs

Aviation's footprint

Source: World Resources Institute, 2020

2% Global CO₂ emissions

1.3% International 0.7% Domestic

915Mt Aviation CO₂ in 2019

www.aviationbenefits.org | 13

Demonstrating continuous efficiency gains

Efficiency improvement since 1990 (index)

Global economy improvement in CO₂ per \$GDP

Global airlines improvement in CO2 per RTK

Heavy-duty trucks						
(US) gallons per mile						
Passenger cars						
(US) gallons per mile						

Average efficiency improvement per year (index)

Aircraft gallons per tonne-kilometre

Rapid efficiency gains compared with other transport modes

Comparison of operational fuel efficiency between different modes of transport, 2014 EU

Latest generation short-haul aircraft can have perseat emissions of around 50g CO₂ per kilometre.

Grams of CO2 per passenger kilometre

*Average occupancy of cars is around 1.5. These figures do not include embedded emissions from construction and maintenance of infrastructure, which are less important for aviation.

Aviation Climate Goals

1.5% AVERAGE ANNUAL FUEL EFFICIENCY IMPROVEMENT 2009-2020

Pre-Covid-19 tracking above average at around 2% per annum

STABILISE NET AVIATION CO₂ EMISSIONS THROUGH CARBON-NEUTRAL GROWTH

To be delivered for international aviation through the UN (ICAO CORSIA)

Aviation's global climate strategy: goals and pillars of action

What types of technology developments can we expect?

Over **15,000** new aircraft have been ordered by airlines since 2009

(Many of these to replace older, lessefficient aircraft) **\$15bn** annually spent on efficiency research by manufacturers

Each new generation of aircraft is ~20% more fuel efficient

Advancing radical new technologies:

Electric, hybrid and hydrogen aircraft for

2035

www.aviationbenefits.org | 20

Improve efficiency

Changing the fuel... H2

How long does it take to develop and deliver a new aircraft?

\$10-30bn

Cost of developing a brand-new aircraft, depending on complexity

Improvements in operations and infrastructure

Operational measures that can be deployed

Flying better

- Wingtips reduce fuel use 4%
- Continuous descents save 150kg per landing
- Green departures to save fuel
- Cleaning engines to improve efficiency
- Single-engine taxiing (electric taxiing soon)

Collaboration

Real time
information
sharing between
all operational
partners (airport
collaborative
decision-making,
A-CDM)

Aircraft diet

- Lightweight seats
- Using tablets instead of paper flight documents
- Cabin equipment made of new materials
- Refuelling and loading water at the last minute

Deployment of sustainable aviation fuel

Current state of deployment

600,000+ Flights on SAF since 2011	7 technical pathways approved	\$40 bn SAF in (public) airline forward purchase agreements so	
<1% of global jet fuel is SAF currently	14 plants operating or under construction	far	

How SAF leads to a reduction in CO₂

Indicative overview of where CO2 measures could be deployed

	2020	2025	2030	2035	2040	2045	2050	
Commuter » 9-50 seats » <60 minute flights » <1% of industry CO2	SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	ssions
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO2	SAF	SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	Electric or hydrogen fuel cell and/or SAF	of CO2 emi
Short-haul 100-150 seats 45-120 minute flights ~24% of industry CO2 	SAF	SAF	SAF	SAF potentially some hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF	~27% (
Medium-haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO2	SAF	SAF	SAF	SAF	SAF	SAF	SAF potentially some hydrogen	of CO2
Long-haul » 250+ seats » 150 minute + flights » ~30% of industry CO2	SAF	SAF	SAF	SAF	SAF	SAF	SAF	~73%

SAF will remain a vital part of aviation decarbonisation

Even assuming highly optimistic use of **electric** and **hydrogen** energy for short-haul and some medium-haul operations in 2050, the vast majority of traffic (RPKs) will still rely on the use of **sustainable aviation fuel**.

2050 % of operations by energy source (indicative example)

Offsetting, marketbased measures or investing in out-ofsector carbon reduction

Current most common options

Industrial carbon reduction Renewable energy

Carbon reduction

Forestry

Natural carbon solutions Carbon removal technology

Most likely mid-century

CO₂ Emissions Transparency & Calculations

Ensuring Transparency on CO₂ Impact

CO₂ transparency - rising expectations from passengers, corporates, agents, and regulators

Proliferation of calculators and methodologies, no standardized approach

Lacking capacity for all airlines to respond to requests

1 out of 6

IATA member airlines display CO₂ data on their website

The CO₂ Challenge

Urge to understand the environmental impact from flying.

Passengers

15 November 2023

Background – CO₂ data

Proliferation of calculators:

DEFRA ICAO ADEME EN16258 Atmosfair EcoTransit EEA

- Lack of harmonization/standardization
- Methodology vs. calculator
- Theory vs. reality
- Absence of primary data
- Frequently outdated
- Need for adaptation & specific guidance

Comparing results

between calculated results.

LHR-GVA Economy - Return

Calculator $1 - 183 \text{ kg CO}_2$ Calculator $2 - 210 \text{ kg CO}_2$ Calculator $3 - 274 \text{ kg CO}_2$ Calculator $4 - 240 \text{ kg CO}_2$

Background – CO₂ data (2)

- 1. Development of CO₂ methodology
- 2. Industry data model based on primary data
- 3. Global and consistent distribution of CO₂ results

57% of surveyed travel businesses indicated IATA as

most credible source*

*survey conducted in November 2021

IATA Standard Methodology (RP1726)

Review of existing methodologies

Identifying best practices within existing methodologies

Step-by-step methodology based on airline best practices and with defined criteria in mind

Degree of flexibility to account for airline or local specifics

Developed by industry experts for the industry

Criteria

Simplicity

Transparency

Informative/Educational

Alignment

IATA Recommended Practice RP1726

- Based on aircraft type-specific fuel consumption
- Recommends use of CORSIA MRV
- Clearly defined CO₂ scope, including guidance regarding non-CO₂ emissions and RFI
- Weight-based CO₂ allocation between pax and cargo
- Cabin class factors based on industry data
- Guidance on non-revenue pax/cargo and no-show pax
- Guidance on SAF and carbon offsetting
- Recommends use of independently audited data

TATA

IATA RECOMMENDED PRACTICE - RP 1726

Passenger CO₂ Calculation Methodology

RECOGNIZING there is a growing interest from passengers, corporate, travel management companies, and travel agents to receive estimates from members of CO2 information on a per passenger basis for flown and future flights;

RECOGNIZING ALSO that, there is a requirement and value to have one, standard industry best practice approach to calculate per passenger CO₂ emissions, in order to provide a consistent calculation result for Members;

CONSIDERING that different factors beyond the control of members are impacting the fuel burn and related CO2 emissions (e.g., weather and traffic), and considering that members offer services that can be highly seasonal and/or directional, it is not recommended to use individual and single-flight data in isolation to predict CO2 emissions of a flight, as the extent of uncertainties give rise to inaccurate results;

It is therefore RECOMMENDED that the following principles and methodologies are used to calculate CO2 emissions.

1. SCOPE OF IATA BEST PRACTICE

1.1. Fuel Consumption

The CO2 emissions calculation is based on recorded fuel consumption on a per-flight basis. For any given flight, to determine at which point monitoring of fuel consumption starts and ends (including subsequent calculations), it is recommended to align with the existing monitoring method and procedures already applied for the purpose of CORSIA monitoring and reporting and as outlined in Annex 16, Volume IV, Part II, Chapter 2 to the Chicago Convention (Link).

1.2. Aircraft type-specific calculation

The CO₂ emissions calculation is aircraft type-specific, reflecting the average fuel burn and related CO₂ emissions of the aircraft type for a given journey covered by the flight itinerary, taking into account each leg of the journey, and based on the booked origin/destination airport(s) of these legs.

1.3. Purpose of calculation

The purpose of CO2 emissions calculations can be to derive pre-flight or post-flight passenger CO2 data.

1.3.1. Recommended application of pre-flight CO₂ calculations:

- Online flight search engines
- Online travel agents
- Travel booking systems

Corporate travel booking systems/Travel Management Systems
 1.3.2. Recommended application of CO2 calculations based on post-flight data averages:

- Passenger or corporate offset solutions
- Airline voluntary passenger offset programs

1.3.2.1. Note: Predicting CO₂ emissions, or pre-flight per passenger CO₂ data, can either be based on industry data averages (e.g., fuel burn or passenger load factor) or Member own data. Future flight calculation will be based on historical and actual data where available. How different entities use the calculated emissions is not part of the scope of this RP.

15 November 2023

Calculation example: Flight XB123

Consistency of CO₂ emissions shown across the distribution network.

THANK YOU – Questions?

